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Abstract—Constellation’s overarching goal is the federation
of information from resources within an extreme-scale scientific
collaboration to enable the scalable discovery of data and new
knowledge pathways. The resource fabric is comprised of petas-
cale supercomputers and storage systems, users, jobs, datasets
and lifecycle artifacts. For an extreme-scale supercomputing
center, normal operations can generate hundreds of millions
of data products and metadata entries describing the resource
fabric. Constellation federates the information extracted from the
resources using a custom, transformative science graph network;
constructs rich metadata indexes and higher-order derived meta-
data from the extracted information; and conducts scalable graph
analytics to unravel hidden data pathways. Our implementation
and deployment for a production, supercomputing facility shows
that the graph can scale to more than 750 million vertices, its
domain agnostic indexing can answer interesting science queries,
and its analytics can aid in structural, topological and temporal
analysis to identify usage hotspots.

I. INTRODUCTION

Extreme-scale simulations of complex physical phenomena
on leadership-class supercomputers, e.g., Titan [4], Mira [17]
and other machines on the Top500 [10] list, produce tens of
millions of data products that need to be discovered, correlated
and analyzed by a distributed community to glean insights.
Titan, for example, is the U.S. Department of Energy’s (DOE)
27-petaflop machine at the Oak Ridge Leadership Computing
Facility (OLCF). It routinely runs massively parallel simula-
tions from several grand challenge application problems in
science domains such as combustion, fusion, astrophysics,
materials, molecular dynamics and climate. For example, a
single 24-hour, 256,000-core simulation run of the Fusion
application, XGC [5], on Titan (No. 3 on the Top500 list)
produces 1 PB of data, spread across O(100,000) files, each
time step (typically every hour). A large-scale simulation
is typically followed by post-processing or data analyses to
reduce and analyze the simulation data products. Oftentimes,
the simulation and data analyses are run by different user
groups, frequently at different times. In the XGC example
above, post-processing results in an order of magnitude data
reduction from 1 PB to 100 TB, and may be conducted either
immediately after the simulation or weeks, even months later.
The simulation and data analysis jobs are often part of a larger,
yearlong “campaign” comprised of hundreds of such “hero”
runs. Such a collaboration requires the capture of metadata

surrounding data production and associated processes, leading
up to the publication and curation of artifacts, to facilitate
scalable data discovery.

Constructing collaborative software for science has always
been a daunting challenge. A key weakness herein is the
inability to sufficiently capture the complex interrelationships
among the participating entities, resulting in isolation gaps.
The diverse nature of the resources within a collaboration,
e.g., data products, processes, users, publications, curation
artifacts, clusters and file systems, and their spatial and tem-
poral connections make it a significant challenge for extant
systems to capture these relationships. In such an environment,
where resource and connectivity information is so scarce, users
themselves are many times unable to make sense of their prior
job runs and experiment setup. This difficulty is compounded
for collaborations or researchers interested in the problem at
a later date. Current state-of-the-art still depends on users
manually providing metadata, an extremely human-intensive
and error-prone process. In this setting, data discovery is
extremely cumbersome or impossible.

To this end, we propose two fundamentally novel concepts.
The first investigation delves into the creation of a transforma-
tive, science graph relationship network structure that bridges
the isolation gaps within a collaboration. The science graph
network serves as a scalable way to both federate and correlate
information (metadata) from the resource fabric of the collabo-
ration. We posit that viewing a scientific collaboration through
the prism of a graph connectivity network allows us to build
complex associations among resources, and discover new data
pathways by both exploiting graph properties and performing
graph data analytics. We argue that new knowledge pathways
can be discovered via the graph network approach that would
normally be impossible with the current state-of-the-art.

To build the science graph, we need rich metadata about the
resources in the collaboration. This leads us to the second con-
cept, which is a foray into the construction of rich knowledge
indexes atop information extracted from the resource fabric.
The multitudes of resources, e.g., data, jobs, publications,
and the systems that host them have a wealth of metadata
buried within, which if harnessed efficiently, can help with
numerous data disposition questions, without requiring human
intervention. Therefore, a key challenge we address is the non-
intrusive construction of sophisticated knowledge structures
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Fig. 1: Constellation Overview. The figure shows our bottom-
up approach of extracting metadata from the resource fabric, and
federating them into a scalable science graph network infrastructure
that facilitates the discovery of new knowledge/data pathways via
rich data mining, analytics and graph querying.

with minimal user or domain input.
Contributions: We propose the Constellation science graph

network system with the following contributions. (i) We de-
scribe resources using automatic metadata extraction and re-
finement strategies, building multi-layer metadata index struc-
tures and derived metadata from the base metadata. (ii) We use
the metadata and indexes to build a science graph network. We
build rich graph associations and search indexes to correlate
and discover the resources within the collaboration. (iii) We
explore how graph analytics can be layered atop the basic
graph to discover new data pathways. Together, these concepts
will bring about a profound impact on knowledge discovery
in scientific collaborations. Our design, implementation and
analysis demonstrates the viability of the research ideas put
forth, and showcases the challenges involved in constructing
a solution for extreme-scale HPC centers with over a billion
graph vertices and associated metadata.

II. CONSTELLATION DESIGN AND IMPLEMENTATION

We create a transformative “science graph relationship
network” that federates information from resources such as
systems, users, data and processes in a collaboration to enable
the scalable discovery of data pathways (Figure 1). To this
end, we focus on the following key challenges: (i) federat-
ing and connecting the resources in a collaboration using a
graph construct to alleviate the isolation gaps, (ii) enabling
the automatic capture of information regarding the diverse
resources and describing them with rich metadata structures,
and (iii) building associations through intelligent correlation
of information sources, and enabling search and analytics on
the graph to discover new data products.

Science Graph Network: Inspired by the linked data
initiatives of the Web, we propose to view a collaboration
as a sophisticated “science graph network” that federates
information from diverse resources and captures their interrela-
tionships to enable scalable data discovery. The graph is meant
to act as an easily traversed web of metadata vertices, data,
information, and knowledge resources, providing both humans

and machines the ability to reason about them. We posit that
the graph network can answer intuitive queries and scientific
questions about the collaboration and its products that would
normally be impossible or inefficient to process using the
current state-of-the-art. The graph structure has been widely
deployed in social networking to derive relationships between
users and products. Imagine a similar concept extrapolated to
a science network, wherein the graph is used to automatically
and intelligently build associations among resources, e.g., new
data products of interest to a user based on his own scientific
conduct. Sections II-A and II-C explore this theme.

Knowledge Representation: The construction of this graph
is highly dependent upon the improvement of the current state-
of-the-art in resource information collection methodologies.
More specifically, it is crucial that we improve the knowledge
representation of collections of data products and artifacts in
many areas. We propose a bottom-up approach of automati-
cally extracting metadata from the resource fabric, collecting
as much information as possible without user intervention. We
describe data as thoroughly as possible by using flexible and
scalable high performance indexes. We derive as much meta-
data as we can from base metadata extracted from resources,
by designing a multi-layered metadata index structure capable
of supporting ex post facto analytics on base metadata and
properties. Sections II-B and II-D discuss this theme.

Graph analytics and mining: Beyond the graph associ-
ations, deeper levels of knowledge discovery require analyt-
ical techniques and mining. We will explore the structural,
topological and temporal dimensions within the science graph
to glean deeper insights into the usage, complex association
network and hidden knowledge pathways. We discuss scalable
analytics on the graph that can provide novel tools to discover
relevant data products. Section II-E explores this theme.

Design Criteria: Any graph based implementation must
address several key concerns. Wei et al. [25] gave a compre-
hensive outline of the challenges by describing six essential
criteria for building a satisfactory graph implementation in a
large-scale environment. The criteria are: (1) strong scalability
to adapt to the ever increasing amount of data, (2) high space
efficiency to be contained in RAM for high access efficiency,
(3) high query performance to resist the rising search com-
plexity during the scaling-up process, (4) controllable query
accuracy to resist errors introduced by compact data structures,
(5) element location capability to inform the system where
to locate the possible elements, and (6) element deletion
capability to allow the storage system to recycle space. We
validated our design by addressing these criteria.

Criterion (1) pertains to the problems at an HPC facility.
We address this by building tools for extracting information
from the resource fabric. This is addressed in Section II-B.
Criterion (2) pertains to the time and space considerations in
graph construction. We address this with an in-memory graph
structure that differs in design from traditional offerings by
trading certain features for space efficiency. This is described
in Section II-A. Criterion (3) presents the issue of searching
across high volume content offered by an HPC facility. We
address this by adopting a decentralized index design capa-
ble of decoupling and grouping different types of metadata



Fig. 2: Resource entities and their relationships in the graph. The
figure shows different types of resources such as users, jobs, data,
and tags. It further shows several types of edges or relationships by
which the resources are connected.

streams into individual high-performance and scalable indexes,
discussed in Section II-D. Criterion (4) deals with query recall
accuracy. We address this by using a novel hierarchical index
abstraction (discussed in Section II-D3) capable of deriving
new metadata for data products. The new metadata provides
richer descriptions of the material, improving the recall rates
and enhances discovery of new knowledge pathways. Criterion
(5) refers to the location of events of interest within the
collaboration. These events include graph hotspots, popularity,
and temporal evolution of facility resource usage. We address
this by adding an analytics layer (Section II-E) to perform
topological and structural analysis for deeper insights. Cri-
terion (6) refers to the ability to adapt to a dynamic and
ever-changing environment typical of any storage system in a
petascale facility. We address this by building a highly efficient
difference engine (described in Section II-B that compares
daily snapshots of the state of the facility.

A. Graph

Constellation’s base structure is a graph network with the
diverse resources of the collaboration represented as vertices
or nodes in the graph. Resource types include the following:

• organizational resources, comprised of system users and
allocation projects to which they have been assigned,

• process resources, comprised of large-scale application
simulation and data analysis jobs that run on the super-
computers and analysis clusters,

• data resources, comprised of output files from application
simulation and analysis jobs, which reside on the HPC
center’s filesystems and archival storage, and

• conceptual resources, comprised of user specified re-
source tags and curated products like digital object iden-
tifiers (DOIs).

Given the resources, we need to identify and document
the relationships among them. In general, graph databases are
well-suited for supporting systems requiring complex, flexible,
or evolving data schemas, such as scientific collaborations.
Because relationship information (represented by graph edges)
is local to, or indexed from, resources (represented by graph
vertices) within the graph, graph databases are especially
suited to satisfying complex queries over large sets of re-
sources. Such a graph infrastructure can elegantly capture
the many to one and many to many relationships between
and among these entities. For example, jobs and their data
products can be linked to the facility users that initiated them.

TABLE I: Constellation Graph size
Data Source at OLCF Vertex Type Count
Lester (Spider parallel file sys-
tem snapshot)

file 750 Million

HPSSDU (HPSS tape archive
snapshot)

file 61 Million

RATS (accounting) user 13K
RATS group 18K
scheduler logs on Titan jobs 500/day
scheduler logs on Titan apps 8K/day

The graph structure offers a natural, non-hierarchical view
into the interactions among collaboration resources, alleviating
connectivity and isolation gaps.

Constellation represents relationships among resources as
edges, as shown in Figure 2. Relationships form strong, but
flexible organizational structures and answer questions about
relevance and dependency among the resources. The graph
allows relationships of any type to be created at runtime
between any two vertices. Since in a real-world scientific
collaboration, resources can share complex and diverse rela-
tionships, we explored a broad set of semantics for edges,
namely Ownership, e.g., user owns a job; Membership, e.g.,
user belongs to a project or a group; Component, e.g., these
files belong to this directory or the apps are part of this job;
Provenance captures the lineage of the resources, e.g., this
job produced these datasets; Context connects a resource to a
new, larger structure e.g., data or job is part of a DOI or tag;
and Suggestion indicates a prediction of a related data product
(or any resource) via the correlation of metadata sources or
analytics on the graph. The key challenge here is identifying
and asserting relationships from available resource metadata.

While most open source solutions scale by caching portions
of the graph on disk, Constellation requires that all of the
graph be kept in memory to facilitate the complex queries it
is designed to support. To achieve a reduced memory footprint,
we used node properties only to capture file ownership. While
node properties, which are defined as attributes associated
with entities in the graph, allow for very fast queries on the
graph, they also consume significant space in memory. Thus
we traded lookup speed for memory space to make it possible
to keep the whole graph in memory.

Most of the resources in Constellation represent files re-
siding on the parallel file system. Extracting this metadata
is a costly operation and can only be done once per day
and all updates must be loaded to Constellation at once.
Our customized solution facilitates this bulk update in ways
currently available graph systems cannot.

B. Information Sources for Graph Vertices
Now that we have defined the resource types that can be

represented by vertices in the graph, we will describe how
that information is extracted from the systems that host the
underlying resources (users, groups, datasets, and jobs) using
the OLCF HPC center as an example. While the details of the
tools may vary based on site-specific constraints, our goal here
is to illustrate some of the common challenges seen in extract-
ing metadata from widely-used systems such as accounting
databases, Torque/PBS scheduler logs, the Lustre-based file
system and the HPSS archive. Since these systems support



production HPC operations, we must also extract information
without imposing significant overhead. The two challenges
to gathering information from such diverse systems are that
they are neither designed to a) interface externally nor b)
transform the extracted information into a format suitable for
ingestion into the Constellation graph. As a result, we include
mechanisms for extracting and reformatting the information
without adding overhead.

Table I shows the resource type counts in Constellation for
the OLCF case study. All of the organizational resources, e.g.,
users and group information, are captured in the Resource Al-
location and Tracking System (RATS) database. We developed
a tool that periodically queries this database and updates the
Constellation graph accordingly. Similarly, we extract users’
jobs from Titan’s scheduler logs. This metadata is obtained by
parsing two different log streams from Torque [20] (a queue
manager) and PBS [12] (a batch system).

We obtain file information via file metadata from the Lustre-
based Spider storage system, which currently stores over 750
million files and directories (Table I). Tracking a constantly
changing 750 million entry file system can be very arduous.
Using “ls -l” on such a large-scale file system will simply
not scale. Alternatively, if the file system has the change log
feature enabled, we could use that to capture all changes and
populate the graph. However, due to the potentially large log
sizes (tens or hundreds of GBs), OLCF had not enabled change
logs on Spider. Therefore, our solution is to capture a daily
snapshot of the file system metadata and identify the changes
on the file system between consecutive snapshots. HPC centers
often create file system snapshots to monitor space usage by
user and project (e.g., Lester tool developed by OLCF). We
leverage this information to produce a daily delta of file system
changes. The challenge then is to perform a diff between two
snapshot files with over 750 million entries. We developed
a customized difference engine (using an Apache Spark over
Hadoop solution [21]), to compute the difference as files are
created, updated or deleted on the file system. The result is
then applied to the Constellation graph to produce an up-to-
date set of file vertices. The full end-to-end process of this
engine takes considerable time (hours), so we deploy it as a
background process once per day.

For the archival storage system, HPSS, we developed a
tool HPSSDU, which produces a snapshot of the metadata.
Run once daily, HPSSDU reads the DB2 database where
HPSS stores its metadata to extract and format information
about each file stored in the archive. The information retrieved
corresponds to the normal POSIX inode information, like that
retrieved from Lustre: pathname, owner id, group id, creation
time, access permissions, etc.

In the above discussion, we have highlighted the challenges
of extracting information from extreme-scale file systems and
archival storage. The process of creating snapshots for the
parallel file system and the archive consumes several hours and
is exacerbated by the explosive growth in storage (Table I). At
future exascale volumes, it is estimated that at current rates, the
daily processing will exceed 24 hours. The above challenges
exemplify the difficulties of creating a system displaying near
real time information.

C. Associations
The association engine (Figure 1) within the science graph

network is responsible for building the connectivity between
the nodes (resources). We categorize the associations into the
following: (i) basic connectivity, (ii) complex associations and
(iii) user-specified views and context. Such rich associations
are needed to answer sophisticated user queries.

1) Basic Connectivity: The science graph will need to
use the federated resource information to automatically and
intelligently build associations between the resources. The
base graph is a set of vertices and basic connectivity that does
not require complex correlation of resource information. For
example, straightforward connectivity might include links such
as users’ membership to a group or a project. These edges
represent facts in the graph that can be derived using standard
system commands. The association engine is responsible for
asserting such facts in the graph. The facts themselves can help
answer several interesting queries, e.g., “show all the DOIs
belonging to the biophysics project,” while also laying the
foundation for more advanced search queries (Section II-D).

2) Complex Associations: Once we have a graph with
base-level connectivity, we then derive more speculative rela-
tionships between resources based on correlating the wealth
of metadata sources. The goal here is to see how we can
build associations automatically, based on metadata extracted
from resources and derived indexes, without requiring user
intervention. To illustrate this type of association building
further, consider the Facebook example of finding friends
based on overlapping stints at an institution [6]. The equiv-
alence here is finding if a data collection belongs to a job
based on overlapping times. In the absence of a user or
a workflow linking jobs and data products together, how
can the graph association engine automatically deduce this
relationship? We derive such relationships automatically by
correlating metadata sources, e.g., job scheduler logs and file
system stat information. For a given user’s job, we can obtain
start and end times from the scheduler log; based on this
job window, the association engine can query the file system
stat metadata for data products created by the user during the
same time window. Thus, there is a likelihood that the data
products may be related to the job in question, but it is not
certain as the datasets could belong to another job that ran
at the same time. The association engine marks this potential
relationship discovery between the job and the data collection
with a “suggestion edge,” indicating the uncertainty involved.
It can further assign weights or even a probability to denote the
level of confidence in the association, e.g., in addition to the
scheduler logs, correlating the job script metadata can result
in some keywords corresponding to the datasets (directory or
file names), prompting the association engine to give the edge
a higher probability. The graph association engine makes such
connections between resources in an attempt to discover new
data pathways. Extant data discovery and workflow systems
(e.g., Earth System Grid Federation [7], Pegasus [1]) are
simply unable to capture such advanced relationships, missing
a huge opportunity for discovering new knowledge pathways.
In Section II-E, we will delve into more sophisticated graph
analytics techniques to derive connections between related data



products.
3) User-specified Views and Context: Consider a desktop

user marking several of his pictures with an index term or a
“tag” for quick retrieval. Imagine a similar idea extrapolated
to the science graph, wherein users can collaboratively add
a richer context to the graph by adding their own tags to
associate subsets of resources in order to quickly identify
and operate them. Tags can offer users a personalized view
of the science graph, and can be shared with other users.
For example, a group of astrophysics users working on a
paper submission to the Supercomputing conference may wish
to create a tag, “Supernova-SC16” that associates their jobs
on supernova explosions, data and collaborators so that the
resources can be quickly retrieved and operated on. The
tag name, the associations and the user-provided metadata
become part of the graph, and will be available for search and
discovery. In the future, another user can pose a query such as
“show me all SC papers on supernovae explosions that used
the Titan supercomputer.” Our current implementation of the
graph can support the creation of such “conceptual vertices.”

Similar to tags, digital object identifiers (DOI) is another
resource that we can create in the science graph, enabling
the association of lifecycle/curation metadata and resource
artifacts (e.g., jobs, data and publications). While not cur-
rently implemented, DOI resources can also help the graph
association engine with inferring automatic associations. If a
user used a specific dataset for discovering key artifacts (like
hurricanes) and documented it via a DOI in the graph, it gives
the graph a reference dataset (and associated resources like
publications) for that artifact to discover related data products.
The graph connectivity and association engine allows us to
build and explore such richer concepts.

D. Hybrid Indexes for Improved Search

Ultimately, the most important feature of Constellation is
its ability to allow users to search, discover and disseminate
resources of the scientific collaboration. In this vein, the
harvesting and cataloging of metadata are necessary operations
that must be undertaken to support search. An intuitive first
step is to leverage the construction of the Constellation graph
to enrich our metadata knowledge. We can abstract a graph
operation as a computational task to determine whether graph
G contains graph pattern H from a user. Abstractly, this
can be seen as the NP-complete problem known as subgraph
isomorphism. Thus, if we completely rely on graph traversals
to find H , the operations will be computationally intractable
as G grows. Unfortunately, as we are building a customized
solution because of the limitations imposed by the HPC
environment (see Section II-A), we are not able to leverage the
powerful property graph features that are prominent in open-
source and commercial graph engines. Instead, our solution
employs a decentralized, hybrid approach for harvesting and
storing descriptive properties of the various resources in the
graph. This approach decouples the vast metadata stores with
the graph, so that each component focuses on one particular
aspect of description, utilizing both the flexibility of navigating
through relationships in the graph as well as leveraging high-
performance search indexes that are external to the graph.
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Fig. 3: Overview of decentralized approach for storage and discovery
of metadata. A client issues a query to Constellation, which dis-
patches it to the two external metadata indexes (Hierarchical Index
and Stat Index). It collates the results from the external indexes and
combines graph traversals to satisfy complex queries.

To enable property-based queries in this environment, we
catalog metadata in separate stores. Specifically, we distribute
these properties amongst three different data structures. The
first is within the graph itself, where relationships are nat-
urally defined through the edges in a variety of ways (see
Section II-A for relationship types) and resources are defined
by a universal resource node ID. The second component
catalogs the properties we define as system, or stat metadata,
which include simple key-value properties that represent basic
characteristics of the resources such as timestamps, names,
and access properties. This information is held in an inverted
index external to the graph using the Spark framework [21] and
references node IDs in the graph. The final component is also
held externally in a hierarchical inverted index data structure
using the open source Solr framework [2]. While the former
index archives system metadata, the hierarchical index is built
from domain-specific metadata extracted from the resources.
An architectural overview is shown in Figure 3.

The diversity of the metadata provides us flexibility in query
support, allowing us to perform and answer several interesting
queries efficiently, such as the following:

1) show all the DOIs belonging to this researcher
2) show all jobs run last week by a facility user
3) show all files that contain the climate land modeling

variable ”total leaf area index”
4) show all files in a simulation that show increasing

temperatures through an entire decade of a run
5) show all the jobs that ran in the last 6 months and are

associated with any resource that has an aggregate mean
of 35 degrees Celsius in the amazon forest.

It is important to note that while some of these queries are
addressable by one of the three metadata catalog components
(e.g. queries (1), (2), and (3)), our novel approach guarantees
that other queries can be satisfied using derived metadata
values (e.g. (4)) or some combination of the three components
(e.g. (5)). Query 1 can be addressed with simple graph
traversal. Query 2 is satisfied by the stat metadata index.
Query 3 is satisfied by the resource based metadata index.
Query 4 is satisfied by metadata derivation within the resource



based metadata index. Query 5 requires that all three search
mechanisms be used to together. We describe each of the three
components below.

1) Graph Traversal: Most common queries can be resolved
by examining the edges connecting resources of various types
in the graph. In the previous section, we discussed basic
connectivity in the context of the graph association engine,
which will answer these edge traversal-based queries.

2) StatMetadata: System, or stat, metadata constitutes a
major portion of data properties in an HPC facility. These
properties are key pieces of information for both administrators
who monitor the system behavior, as well as facility users
who want to peruse their contents quickly. This information
includes time information of file metadata operation (ctime,
mtime, and atime), UID, GID, mode, and file path. Times-
tamp information and file path are examples of two major
attributes to be searched in this manner.

The design of the stat index depends on a number of
factors. The most important problem to consider is how this
external index will be synchronized with the graph. As seen in
Section II-A, Constellation is updated in batch mode exactly
once every night using the difference engine that compares two
daily snapshots of the filesystem. This procedure also provides
the stat metadata we would like to capture. In the worst case,
we may have to rebuild the entire search index in order to
synchronize the two structures.

Figure 4 shows the basic architecture for the stat metadata
search index. The architecture comprises of a search service,
an HBase [21] index, and the index builder. The search service
provides suitable APIs allowing the Constellation graph to
pose queries against the HBase index. We chose HBase, a
popular distributed key-value store, to implement the stat
metadata index due to its desirable scalability characteristics
(the need to scale to 750M file entries). In order to optimize
the performance of the index, we employed the following
techniques: (a) pre-splitting region keys to maximally paral-
lelize the insert/update operations; (b) applying compression
format for index storing in order to reduce the amount of I/O
operations; and (c) enlarging the memstore size to reduce the
frequency of memstore compaction, which can easily multiply
I/O operations unnecessarily.

To interface with the HBase index, the search service uses
Thrift [19]. The index builder constructs the inverted index
from the diffs computed by the diff engine. File paths, for
example, are ingested into the index by parsing the pathnames,
identifying keywords (excluding common words), and using
the keywords as keys and graph vertex IDs as values. The re-
sulting key-value pairs are stored in HBase and are accessible
through the search service. To this end, we have utilized Spark,
due to its optimal performance for large-scale data processing.
A similar approach can be adopted to index not just file stat
metadata but also job script and DOI metadata as shown in the
Figure 4. For example, indexing the job script metadata would
allow us to query, “if a set of jobs belonged to a campaign
of runs for the Intergovernmental panel on climate change,
IPCC,” where campaign is an attribute that is extracted from
the PBS job script, describing the job run on Titan.
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(Hbase)	  
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term|ID	  

Index	  Builder/
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Fig. 4: Architecture of stat metadata index. A client issues a search
query to the search service that interfaces with HBase search index via
the thrift API. The index is a KV store that ingests system metadata
from Lester, which produces the daily file system snapshot.

3) Hierarchical Metadata Index: The stat index outlined
above works well for queries requesting system specific infor-
mation. While useful for administrators and users that know
specific information about the file location or creation, the
metadata captured here is not descriptive enough to support
richer queries about the data itself. Query (3) in Section II-D,
for example, requests to find files that contain a specific
variable “total leaf area index” (a key variable in a climate
land model). This field would not exist in the stat index.
These types of queries are addressed by employing a second
external index that contains richer fields of description. This
index employs the popular high performance inverted search
index Solr. Furthermore, we instituted an automated metadata
derivation component that will utilize a combination of base
metadata values as well as the data itself to derive new
metadata. Specifically, we implemented a novel, hierarchical
index abstraction that attempts to form a knowledge hierarchy
by deriving new metadata from previously extracted base
metadata. In this framework, we take a bottom-up approach
of automatically extracting metadata from the resource fabric
(e.g., scientific datasets) and collecting as much information
as possible without user intervention. A similar approach can
be adopted to extract metadata from other elements such as
job scripts, logs, documents, charts, and tables.

The hierarchical framework is outlined in Figure 5 and
consists of four distinct abstract layers. The foundational layer,
layer 0, consists of metadata extracted from self describing
scientific data formats (e.g., netCDF) that describe the exper-
iment, simulation, authors, and variables and dimensions of
the contents. Layer 1 derives new information about interesting
aggregate values on an individual file based on the information
extracted in the previous layer. These aggregate values may
include a mean, a histogram, or a boolean property of the data
not otherwise defined. Layer 2 defines aggregate properties
over collections of data. Collections constitute an important
aspect of scientific applications’ data production behavior, and
can be formed either via the data production process where
sets of files (thousands) are grouped based on being generated
together or based on derived layer 1 properties (e.g., files
grouped based on temperature ranges). Yet another example is
a user-defined collection like a DOI, where relevant resources
are fused together by a common identifier. Finally, in layer
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Fig. 5: The multi-tiered, hierarchical search index design. At Layer
0, we extract base metadata from files and store in the index. Layer 1
utilizes basic functions to derive new metadata from the data. Layer 2
performs the same operation across collections. Layer 3 allows users
to customize functions that will produce new metadata.

3 we allow publishers of data to define custom metadata
properties. These customized properties are derived as output
from user-defined functions over a collection of datasets.

We begin our implementation of the hierarchy by indexing
metadata extracted from netCDF files. NetCDF is a self-
describing, array oriented scientific data format, designed to al-
low users to inject descriptive information and seamlessly inte-
grate it with the data through its headers and global attributes.
NetCDF files contain metadata in the header, consisting of
attributes and properties, and data in the body, represented as a
multidimensional array (e.g. spatio-temporal dimensions). One
of the main benefits of utilizing netCDF is its rich complement
of tooling. One such tool, ncdump [18] extracts metadata and
places it into easily parsed comma separated values. We use
ncdump to grab pertinent properties, and then POST them as
payload into a sharded Solr index with a pre-defined schema.
The properties are posted in association with a specific nodeID
in the graph and the index remains synchronized. We then
send queries to Solr over distinct properties like variable or
projectname. This base information is populated into the
foundational layer 0 of the hierarchy.

After layer 0 is populated, we derive metadata for the upper
layers. For layer 1, we read the contents of the dataset and
compute the layer 1 data. This new information will be injected
into the index at higher tiers so as to further describe the
data resource and provide new information for derivation. The
processes apply simple, domain-agnostic functions like mean,
min and max over individual properties of a single data
resource. For example, for a climate dataset, we can find the
minimum temperature of a specific data file within a model’s
time series and inject that value back into the index with the
field name mintemp.

This background process also extracts layer 2 metadata
from collections of data. A more complex example of oft-used
collections are time series experiments used in climate models,
where each file represents values of variables (e.g. atmospheric
pressure, ocean salinity, etc) in a particular year. Subsequently,
the files generated by the model output are grouped together

for analysis over a time epoch. At this level, we apply the
domain-agnostic aggregate functions to the collection, which
could either be applying the function to the collection of files
themselves or applying the function on the layer 1 attributes
derived from the files. For example, we may compute a global
minimum from the minima of individual files, or we may
compute minimum temperature value over a specific grid point
over a period of a 150 years and inject that value as property
in the index.

The top layer (3) allows user-defined functions to be applied
to individual or collections of datasets, so that we may derive
domain-specific properties. One example a user defining an
analysis function is to compute a boolean property repre-
senting whether the temperature over a specific grid point is
monotonically increasing over a 10 year collection of climate
model output files. Constructing layer 3 is somewhat more
complicated, and is a source of future work.

The layers described in the hierarchical index will allow
us to answer rich queries about datasets without the user
having to provide any metadata, thereby enabling the discovery
of hidden data and knowledge pathways that would have
otherwise been impossible. Our current index implementation
consists only of netCDF data, but we plan to extend our
implementation to other file formats such as text documents,
publications (in formats like word docs and pdfs), figures,
charts, and other valuable resources that can leverage open
source extraction tools such as Apache Tika [21].

E. Graph Analytics

In Section II-C, we described association building within the
graph, as a means to derive relationships between resources.
Given the rich set of resources within a large-scale collab-
oration there are deeper, and more meaningful connections
hidden beneath the surface, which if unravelled can help
answer sophisticated queries that provide insights to the end-
user about different knowledge artifacts (perhaps, even across
disciplines). The graph representation of the resources allows
us to perform some very interesting analytics based on its
structure and topology. Imagine the ability to suggest to users
new resources (e.g., datasets) of interest or to administrators
on how to provision resources based on either graph analytics
or data mining. The graph analytics techniques primarily deal
with the structural (or topological) and temporal properties of
the graph to identify characteristics such as densely populated
regions of the graph, popular data products or usage of
resources over time, and recommend further study of such
resources as well as performing actions based on them (e.g.,
a popular dataset may require more redundancy or identifying
a specific library that is used often by codes). On the other
hand, we may need data mining to go beyond the topology of
the graph, to predict potential data products of interest based
on a similarity in the key attributes used to produce the data.

We illustrate a specific data analytics scheme used in
Constellation, namely PageRank. The graph structure of Con-
stellation is highly similar to scale-free networks such as the
World Wide Web. In particular, a few nodes act as hubs
(e.g., common libraries used within the Titan system) and
other nodes have sparse connections to the rest of the graph.



Fig. 6: The figure shows the network between users (red vertices),
groups (green vertices), and projects (blue vertices). Edges are
connected between users and projects as well as users and groups.
We can find a large connected component with 5440 vertices out
of a total of 5759 vertices, along with other 103 small connected
subgraphs. The diameter of the largest connected component is 14,
which means a vertex can reach any other vertex in 14 hops.

This makes it suitable to analyze the topology of the graph
using PageRank. All of the files from the file system, users,
groups and jobs are integrated into a single, unified graph
representation. Based on the overall connectivity in the graph
(see Section II-B), it is possible to use this topology to
discover popular data products (vertices with many in-bound
edges). Similar to web-pages that are “ranked” based on their
popularity, and are used to provide customized search results
to users, our implementation of PageRank provides the ability
to search through the graph to quickly access relevant data.

There are specific challenges associated with the implemen-
tation of PageRank on a graph that has over 750 million enti-
ties. Similar to the Internet, the Constellation graph may not be
strongly connected as shown in Figure 6, which is constructed
from the information in file system snapshot data. This can
lead to isolated parts of the graph having high popularity ranks
despite not being well connected. To overcome this challenge,
we implement a version of PageRank that removes nodes with
zero out-degree and adds random jumps to avoid being limited
to isolated parts of the graph. Our implementation provides
near real-time performance for searching across the graph. In
addition to analyzing the graph itself, it is also possible to
analyze the metadata (extracted from the data) to discover
related data products. For example, datasets produced using
similar simulation parameters (e.g., input decks, node count)
or models (e.g., climate land models) can be linked together
as being potentially related. Such mining of metadata enables
the discovery of new data pathways.

III. EVALUATION

We implemented Constellation using a dedicated cluster of
several systems (seven in total), and deployed it in the OLCF
environment. The cluster consists of two-socket, quad-core
machines, each containing 96 GB RAM and 1 TB of local
storage. One system was used for building the Constellation
graph and another was used as an external user interface
for clients. One of the nodes hosted the hierarchical index,
which interfaced with the metadata collection process that
was run on a cluster. The remaining four were responsible
for both gathering resource information from the different
data sources discussed in Section II-B, as well as the Hadoop
cluster required to run the diff engine. The implementation of

the stat index utilized 9 virtual machines. Each VM consists
of 32 virtual CPUs, 64GB of RAM, and 500GB of local
storage. While we have implemented a subset of the features
outlined in Figure 1, we have nevertheless found a number of
encouraging results in our initial evaluation.

Graph structure evaluation: We compare the construction
efficiency of the Constellation graph structure with the open
source, property-based graph engine Titan:db [9] (note that
this is different from the Titan machine in OLCF). Titan:db
has many advantageous features, including the ability to retain
node properties as well as having a well-supported query
language (i.e. Gremlin). Our customized in-memory graph
solution, however, compares favorably with Titan:db given the
requirements of Constellation. The requirement is that large
amounts of data must be inserted and updated into the graph
on a daily basis, a feature that is not emphasized within the
Titan:db community. Our evaluation shows that Constellation
outperforms Titan:db for graph construction by 100x for a
500-million vertex insert operation. This is because Titan:db
was not designed to perform graph updates in bulk and builds
a synchronous index during graph construction as opposed to
our decentralized index architecture.

Before the Constellation graph is updated, there are two time
consuming preceding steps. The first is to launch the two data
collection tools, Lester and HPSSDU. Lester, the file snapshot
capture tool, takes 1.5 hours on average to complete, while
HPSSDU, the HPSS snapshot capture tool, takes around 2.5
hours to complete. The subsequent step requires launching the
diff engine against two consecutive snapshots. This procedure
takes on average 50 mins with a deviation of 20 mins. This
deviation in time depends on the volume of data that needs to
be diffed as well as the number of inserts, updates, and deletes
to be computed between snapshots.

External index evaluation: We focus on the performance of
the external search indexes (Section II-D). Table II demon-
strates the time and space overhead of the stat metadata
index, along with the response time of a few sample queries.
Recall that the search index is maintained in HBase and is
built using a Spark infrastructure. Building the index took
3.08 hours, including 2.14 hours for inserting the computed
values into HBase. As a proof of concept, we used eight
region servers for HBase and eight worker nodes for Spark.
Our first test query retrieves files with the keyword “netcdf”
associated with a user with UID ’9486’. The query matched
17.5 million entries consuming a total of 247s for retrieval.
HBase operations consumed 53s of the total time. Our second
test query retrieves files with a regular expression match of
“netcdf.*baseline.*” associated with user ’9486’. The query
matched 9.5 million entries consuming a total of 187s for
retrieval, requiring 127s for HBase operations. Even though
query 2 had only half as many entries in the result set
as query 1, it took 75% of the time required by query 1,
which may seem counterintuitive. However, query 2 involved
extra overhead because of the regular expression computation.
Additionally, with more hardware resources and optimization
of the index, we can reduce these search times. Limiting the
result set will also contribute a reduction in response time of
the query. We can further overlap the retrieval of additional



TABLE II: External search indexes (average of 5 runs).
Parameter Value
saving index to HBase 7693.89 s (2.137 hrs)
index building time (includes
saving to HBase)

11109.79 s (3.08 hrs)

index space 32.2 GB
index entries 736.4 million entries
search query 1 247 s (17.5 million entries)
search query 2 187 s (9.6 million entries)

query responses as the user analyzes the initial result set.
We now focus on the evaluation of the hierarchical metadata

index. According to OLCF, the usage of the Spider storage
system on average is around 15PB of data (approximately
50 percent of the total capacity of 32 PB). It is desirable to
maintain file system usage at a 50% capacity, as performance
deteriorates when usage approaches full capacity because of
the overhead in finding free storage blocks. As a result, the
center periodically purges data from the file system at around
50%. This requires the user to maintain only active data
(required by currently running or impending jobs) on the file
system while archiving the remainder on HPSS storage. The
challenge in building the hierarchical metadata index is in
deriving metadata from petabytes of data as the file system
snapshot is changing regularly. Note that we do not build the
hierarchical metadata for the entire petascale storage system.
Instead, as mentioned in Section II-D3, it was built using either
a user-defined collection or a scientifically insightful dataset.
The metadata extraction is performed on another cluster within
the facility and launched as a parallel application on several
nodes. We use the output of the diff engine described in
Section II-B, which computes the difference between two
consecutive file snapshots, as input to metadata extraction.

TABLE III: Time taken and index size for derived metadata.
Layer Time (s) Index Size (KB)
0 (per file) < 1 6.8
1 (per file) 118 29
2 (aggregate) 38 37

In Table III, we show the time taken and volume of
metadata derived for each layer of the hierarchical index (with
the exception of layer 3) using the output from the Atmo-
spheric Model Intercomparison Project (AMIP) [11] experi-
ment within the climate domain (available on the production
Earth System Grid Federation). We sampled monthly data
over a decade (120 files in all) from a larger, 150-year run
of the experiment. The files contain several properties (e.g.
temperature, salinity) with their associated values that describe
the experiment and are encoded in netCDF format. We define
time in layer 0 in Table III as the time required to extract
the base metadata properties and put them in the Solr index.
The time measurement for layer 1 is the time needed for
both computation of the basic domain-agnostic functions, like
min, max, and mean, for individual files and the subsequent
injection of the results into the index. The time in layer 2 is
the time required to apply the basic functions on the derived
data in layer 1 across a collections of files (i.e. the decade
consisting of 120 files) and injection of aggregate values into
the index. Note that the time for population of layer 1 is a
cumulative measure (i.e. an aggregation of both layer 0 and
layer 1). Building layer 0 data takes less than 1 second, and the
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Fig. 7: Resource entities and their relationships. Blue rectangles
are users, green rectangles are jobs, and orange circles are groups.
The connections between users, jobs and groups shown in blue. This
subset of the graph is a summary of the most popular set of resources
on a particular day.

index size is 6.8 KB. Layer 1 is built by reading the dataset,
and consumes 118s for generating 29 KB of derived data for a
single file. Layer 2 builds on the derived data from layer 1 for
the collection, and consumes 38s for 37 KB of derived data.
For our sample collection of 146 GB (120 files), the total time
consumed was less than 4 hours and 4 MB of metadata was
generated and injected into the index. Note that this process
can be parallelized for faster indexing.

Next, we conducted a qualitative recall test comparison
between our hierarchical index and the popular climate data
archive Earth System Grid Federation (ESGF) [7]. Our com-
parison involves issuing three queries against both indexes:
(Q1) Find all resources that contain the variable “Surface
temperature (radiative)”, (Q2) Find all resources that have an
average temperature that is greater than 25C, and (Q3) Find
all collections that have an average temperature that is greater
than 25C. Table IV demonstrates that both indexes are able to
satisfy queries for basic metadata lookups (as posited in Q1).
More sophisticated queries over derived information, however,
are not satisfiable by traditional cataloging mechanisms that
our extracted knowledge index can support.

TABLE IV: Hierarchical Metadata Index vs ESGF
Query Hierarchical Metadata Index ESGF
Q1 yes yes
Q2 yes no
Q3 yes no

Graph analytics evaluation: Finally, we evaluate some of
the structural analytics algorithms discussed in Section II-E.
We used a single snapshot of the graph to test our PageRank
implementation. The results are intended to demonstrate the
kinds of inferences one can draw from the graph about system
usage, popularity of users, groups, jobs and domains.

We present a graphical representation of the data in Figure
7. Note that PageRank is run only on the basis of the graph’s
topology, and there is no explicit representation of ‘features’
such as the number of files per user or the number of jobs
submitted. The ten most popular users obtained by running
PageRank on the graph represent users with high utilization
of the Titan supercomputer. The results also indicate that a
majority of the users on that day belonged to the ‘biophysics’
area and the jobs run by them typically included molecular
dynamics simulations. Similarly, the top user group also cor-



responds to the ‘biophysics’ area. In summary, the PageRank
based graph analytics allows us to identify the popular (or
dense) regions or subgraphs within Constellation as a means
to study and address hotspots. Performing such an operation
repeatedly over a period of time will allow us to study the
temporal evolution of resource usage and user behavior, which
can help with provisioning decisions, e.g., purge exemptions.

IV. RELATED WORK

Graphs are widely adopted in enterprise systems for a
wide-range of applications such as organizational and prod-
uct data management, network and IT operations, real-time
recommendations, fraud detection, access management and
social networking [16]. Popular social networking products
such as Facebook [22], LinkedIn [3] and Google Plus [15]
exemplify their use. This includes the social network Research
Gate [23], which is similar to our work because it applies
social networking principles to the discovery of scientific
publications. Our work expands this idea by representing the
entire resource fabric of a scientific collaboration in the graph
in an attempt to discover new pathways.

Several systems above utilize popular open source property
graph engines such as Titan:db [9] and Neo4j [24]. Property
graph is a graph representation model that describes network
topology and arbitrary properties (or attributes) of graph enti-
ties. NoSQL-inspired graph databases typically support prop-
erty graph model because of flexibility and expressiveness. We
also evaluated a property graph for our graph representation,
but chose to implement an in-memory graph due to the query
performance and bursty bulk loading of the graph.

Research in the optimization of metadata search and dis-
covery in large scale environments has been gaining attention
in HPC. Leung et al. [14] address the difficulty of managing
millions of files for large scale storage systems with Spyglass,
which improves the search process by pruning the search
space. They accomplish this by using a novel index parti-
tioning mechanism that leverages namespace locality com-
bined with a signature file format to describe a partition’s
contents compactly. This work, however, only captures system
metadata, such as filename or timestamp, and ignores the
wealth of metadata about the content available within the
file itself. Similarly, Hua et al. [13] and Wei et al. [25]
optimize the search process by adopting Bloom filters that
further prune the search space. Dai et al [8] use Darshan,
an MPI library that can be linked to applications to trace
user, job, and file I/O information and link them up using
property graph. Our work is fundamentally different from
Darshan’s client-based strategy in that we adopt a bottom up,
non-intrusive systems approach to collect information from the
resource fabric. Propeller [27] utilizes access-causality graphs
(ACGs) that capture file-access patterns. Propeller’s realtime
indexing scheme is designed based on the observation that file
accesses of analytics applications tend to frequently cluster
amongst and around correlated files. While this intuition led
to better file-search performance, its focus was only on stat
metadata. Popular climate data archives such as Earth System
Grid Federation [7] and ARM [26] attempt to catalog content
based metadata on a large-scale within the climate domain

using controlled vocabularies. These implementations provide
richer metadata searches for both facility users as well as
external clients that are interested in the data. We expand their
capabilities by deriving new metadata from previous sources.
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